3 STRUCTURE AND EFFICIENT
HESSIAN CALCULATION

Thomas F. Coleman

Computer Science Department and Center for Applied Mathematics,
Cornell University, ithaca NY 14850, USA.

Arun Verma

Computer Science Department,
Cornell University, Ithaca NY 14850, USA.

57

) Ya-xiang Yuan (ed.), Advances in Nonlinear Programming, 57-72.
(© 1998 Kluwer Academic Publishers. Printed in the Netherlands.

58 ADVANCES IN NONLINEAR PROGRAMMING

Abstract: Modern methods for numerical optimization calculate (or approx-
imate) the matrix of second derivatives, the Hessian matrix, at each iteration.
The recent arrival of robust software for automatic differentiation allows for the
possibility of automatically computing the Hessian matrix, and the gradient,
given a code to evaluate the objective function itself. However, for large-scale
problems direct application of automatic differentiation may be unacceptably
expensive. Recent work has shown that this cost can be dramatically reduced
in the presence of sparsity. In this paper we show that for structured problems
it is possible to apply automatic differentiation tools in an economical way —
even in the absence of sparsity in the Hessian.

7 Keywords: Hessian matrix, automatic differentiation, structured computation, spar-
sity.

‘1 INTRODUCTION

Calculation or approximation of the matrix of second derivatives, the Hessian
matrix, is an important part of modern methods for continuous minimization.
Approximation schemes have been particularily popular, e.g., quasi-Newton
methods and finite differencing, partly because they do not require, from the
user, a code to evaluate the Hessian matrix. Conversely, methods that use
exact second derivatives are less popular, despite stronger convergence support,
partly due to an (apparently) onerous demand on the user: supply a code to
evaluate the n-by-n Hessian matrix, H.

However, with the advent of automatic differentiation (AD) tools this bal-
ance is now being challenged. It is now possible to have first and second deriva-
tives automatically computed given a code that computes the objective func-
tion. The difficulty is one of computational cost: straightforward application
of automatic differentiation tools may be inordinately expensive for large prob-
lems. Results obtained in [Averick et al., 1994; Coleman and Verma, 1995)
show that for the related sparse Jacobian problem, the cost can be dramati-
cally reduced if sparsity is exploited. In principle similar techniques [Coleman
and Cai, 1986] can be applied to the sparse Hessian determination problem in
a straightforward manner. An extension of the sparse techniques to problems
with dense but “structured” Jacobian matrices is given in {Coleman and Verma,
1996). '

What can be said of the case where H is both large and dense? The point of
this paper is to indicate that if the computation of the objective function f(z) is
a “structured” computation it is possible to compute H, or perhaps the Newton
step s = —H !V f(z), using automatic differentiation and the computation can
be done economically. Moreover, many (if not most) large-scale optimization
problems are the result of structured computations.

"STRUCTURE AND EFFICIENT HESSIAN CALCULATION 59

First we briefly review our work [Coleman and Verma, 1996] on determining
Jacobian matrices of structured vector-valued mappings F : R —» ®™. In
this case we are interested in computing the m-by-n Jacobian matrix J(z), or

perhaps the Newton step s = — J !F(r). We begin with an illustrative
example. :
Suppose that the evaluation of F(z) represents a composite computation:
F(z) = F(z,y) (1.1)

“where y is the solution to a large sparse positive definite system,
Ay = F(z), (1.2)

and A = A(z). Notice that the Jacobian of F(z), J(x), will likely be dense
even when matrices Jz, jy, J, and A;y are sparse (which is typical) where jy
is the Jacobian of F’ with respect to y, J; is the Jacobian of F with respect to
z, J is the Jacobian of F, and A,y is the Jacobian of the mapping A(z)y (with
respect to). To see this consider that

J = J+J,A7J - A, (1.3)

In general, the application of A~! causes matrix J to be dense.

So, direct application of sparse AD techniques offers no advantage in this
case. However, it is possible to exploit the structure of this composite function
and apply the sparse AD techniques at a deeper level. To see this consider the
following “program” to evaluate z = F(z), given z:

“Solve” for y;: y,— F(z) = 0
Solve for yp: Ayp—y = 0
“Solve” for z: z—F(z,y2) = 0.

" But this program can be viewed as a nonlinear system of equations in (z,91,92)
with corresponding Newton equations,

0z 0
JE 5‘!}1 - 0
63/2 —F(:l:)
“where -
i ~-J I 0 i
JE = Azy -1 A (1.5)

60 ADVANCES IN NONLINEAR PROGRAMMING

The point here is that the “extended” Jacobian matrix Jg is sparse and clearly
sparse AD techniques, e.g., [Averick et al., 1994; Coleman and Verma, 1995;
Hossain and Steihaug, 1995] can be applied with respect to

) 7 Y1 — ﬁ‘(w))
Fg(z,y) = (A(z)y: —n (1.6)
—F(.’L‘,y2)

to efficiently determine Jg. For example, the work required by the bi-coloring
technique developed in [Coleman and Verma, 1995] is of order x-w(Fg) = x-
w(F) where x is a “bi-chromatic number” dependent on the sparsity of Jg,
and w(-) denotes the work required to evaluate the argument. Typically,
X << min(m,n). Additional linear algebra work is needed to extract J from
Jg: compute the Schur complement (introducing zero matrices in positions
(3,2),(3,3)) and obtain,

J = T+ LA T - A,

If it is the Newton step 6, = —J ' F(z) that is required then it is not neces-
sary to explicitly form J. For example, the extended system (1.4) can be solved
directly. It is also possible to compute an approximate Newton step, without
forming J, using an iterative solver. Specifically, if a sparse factorization of A
is computed, an iterative solver involving only matrix-vector products can be
applied to:

(e + J,ATT - Azy])s = — F(x). (.7

In addition to the composite function example given above, many important
classes of large-scale problems are naturally programmed in the structured fash-
ion illustrated in Figure 1.1, e.g., dynamical systems, partially separable func-
tions, systems related to boundary value problems, neural network evaluations,
and product functions [Coleman and Verma, 1996]. The crucial observation
here is that while the Jacobian of F is often dense in these cases, the Jacobian
of the extended function Fg, Jg, is typically very sparse. Hence, the sparse
AD techniques developed in [Coleman and Verma, 1995], for example, can be
applied in combination with AD software to compute Jg in an efficient manner.

We conclude this section with three remarks. First, given that Jg is com-
puted, a standard linear algebra computation can yield J, if required. Alter-
natively, if it is the Newton step s = —J~1F(z) that is required, or perhaps
an approximation, then it is possible to work with Jg directly. Second, the
structural ideas discussed above can, of course, be applied to the special case

'STRUCTURE AND EFFICIENT HESSIAN CALCULATION

Solve for vy, : F'(z,y) =0
Solve for yo : F*(z,y1,92) =0

Solve for.yp : FP(2, 91,92, -,%) =0

“Solve” for output z: z — FP*Y(z,y;,vs,..

'ayp) = 0

“Figure 1.1 A General Structured Computation

61

“of gradient computation. This can be particularily useful when only the for-
ward mode of AD is available, e.g., [Bischof et al., 1995]. Third, the structural
ideas discussed above can also be applied to the case where F(z) is a gradient
function, V f(z), of a scalar-valued function f(z). In this case the computed
Jacobian matrix of F' corresponds to the Hessian matrix of f. However, in
general it is not convenient to supply a structured program to evaluate V f(z)

- it is preferable to work directly with the f-evaluation program, if possible.

'Example: A Composite Function

Suppose that the evaluation of z = f(z) =
Solve for y: Ay-— F(r) = 0
“Solve” for z: z— f(z,y) = 0.

‘It is easy to see that the gradient of f, with respect to z, is given by,

(VAT = ViV, FT AT ~ Auy.

f(z,y) is a composite function:

7 Therefore, the code to evaluate the gradient can be written in “extended” form,
g

GFg(z,y,w) =0, ie,

“Solve” for y:
“Solve” for w:

Ay—F(z) = 0

Vyf + ATw

0

“Solve” for Vf: Vf—[(Ay)— JJTw—V,f = 0.

62 ADVANCES IN NONLINEAR PROGRAMMING

Note that GFg(x,y,w). can be differentiated with respect to all variables to
yield an extended Hessian matrix Hg:

Agy—J A 0
Hg = - Alw+ Vi f ¢ AT . (1.8)
wT[(Azy) - Jle + V2. f wTA, + V2 f (Azy-J)T
It is quite likely that the extended matrix Hg will be sparse. Moreover, a
symmetric form can be obtained with a simple permutation:

0 A Ay —J
H = [AT Vi, f AJw+ Vi f] . (19)
(Azy = NT wTA + V2, f wl[Ay—J): + V2. f
The matrix w” [A,y — J], is symmetric because it represents the second deriva-
tive matrix, with respect to z, of the function wT (Ady — F(z)).
The Hessian matrix with respect to the the original variables z, can be

derived from the 3-by-3 block matrix Hg by eliminating, via block Gauss row-
transformations, blocks (3,2) and (3,3). This yields:

H= "”T[(Azy) - j]a: + Vizf - [(A;I;'w + ngf)TA—l(Azy - j) -
(Azy — NTATTVE A YAy - J) +
(Azy— NTA T (ATw + V2,)]

There are three important observations to make about this example. First,
the matrix H is likely to be dense, due to the action of A~!, whereas under
reasonable assumptions Hg will be sparse. Second, matrix Hg can be obtained
using automatic differentiation applied to function GFg(z,y,w). Sparse AD
techniques [Coleman and Verma, 1995] can be applied to GFg(z,y,w) to allow
for the economical calculation of Hg. Third, it is also possible to obtain matrix
Hpg, without ezplicitly applying a sparse AD technique to the structured gradient
function GFg. We have in mind the following recipe:

1. “Solve” for y, differentiate : Ay — F(z) = 0
2. Solve for w: V,f+ATw =0

‘3. Determine the sparse Hessian matrix of f + wT[Ay — F(z)] with respect
to z,y.

This last observation indicates how to use sparse AD techniques to compute
Hpg given a structured program to evaluate f (as opposed to a structured
representation of V f(z)). We will see in Section 2.2 that this recipe can be
generalized.

'STRUCTURE AND EFFICIENT HESSIAN CALCULATION 63

" Numerical Experiments

In this section we report on a small experiment to illustrate the advantages of
our proposed aproach. We consider a composite function of the form described
above. In particular, the function F' is defined to be the Broyden [Broyden,
1965] function (the Jacobian is tridiagonal). Function f is chosen to be a simple
scalar-valued function with a tridiagonal Hessian matrix. The structure of A
is based on the 5-point Laplacian defined on a regular \/n-by-y/n grid. Each
nonzero element of A(z) depends on z in a trivial way such that the structure
of matrix A; - v, for an arbitrary vector v, is equal to the structure of matrix
A. In particular, for all (i,7), i # j where A;; is nonzero the function A;;(z)
is defined, A;; = ;.

Experiments reported below were performed on a Sun Sparc 5 under the
Solaris operating system in a MATLAB [matlab,]/C environment.

"Experiment 1 : Computing Hg versus H

In Figure 1.2 we compare the time to compute H directly, i.e., applying
automatic differentiation directly to the function f to obtain the Hessian matrix
H, versus the sparse AD computation of Hg using the bi-coloring technique
proposed in [Coleman and Verma, 1995]. Experiments were performed using
the AD-software package ADOL-C [Griewank et al., 1996].

Figure 1.2 ADOL-C experiment

Clearly, exploiting sparsity is a big win and the advantage grows with prob-
lem size. Of course the matrix Hg is not usually an end in itself - if matrix H
is required then a standard block elimination computation can be applied to
Hpg to yield H. However, often matrix H is not really required either — the ob-

64 ADVANCES IN NONLINEAR PROGRAMMING

jective may be to compute (or approximate) the Newton step, s = H™1V f (z).
In this case it may be advantageous to work with Hg directly. This remark is
explored in the next experiment.

Experiment 2 : Computing the Newton step, given Hg, in two ways

Figure 1.3 plots the time required by two different ways of calculating the
Newton step, given Hg. Method 1 - the dashed line — corresponds to first
computing the Hessian matrix from HEg using standard block elimination and
then doing a system solve with the dense matrix H. The second method in-
volves solving a sparse system with matric Hg directly (using the MATLAB
“backslash” function).

Fid
500l Soive by st torming]
he Hossian Matrix ‘
00|
3
%sm 4
- "
/
200|
Sparse Soive on the
100 eMended Hessian Matrix
n 100 200 000 700 800

300 400 500
Probism Size(n)

7Figure 1.3 Comparison of two approaches to calculate the Newton step

Clearly in this case a direct solve using the extended matrix Hg is preferable
for all sufficiently large n.

"2 STRUCTURE

We believe that most large-scale objective functions in optimization are natu-
rally expressed, at a high-level, in a structured form. In particular, the program
to evaluate z = f(x) can be written in the form given in Figure 1.1, where equa-
tion 7 uniquely determines (intermediate) vector y;. So, a compact program to
evaluate f is given in Figure 2.1

'STRUCTURE AND EFFICIENT HESSIAN CALCULATION 65

Solve fory: FE(z,y)=0 _
“Solve” for output z: z — f(z,y1,¥2,---,¥p) = 0

“Figure 2.1 Structured f-Evaluation in Compact Form

“where .
Fl
R F?

FE =
FP

Y 4

The component functions of FZ| F* i =1 : p, defined in Figure 1.1, are usually
conveniently available to the user. It is important to note that intermediate
vector y; is (uniquely) determined by component function F*, a function of
z,¥1,..,Y;- Clearly the composite function example described in Section 1 is
a special case of this general form using just one intermediate vector y. Other
examples are considered in Section 3.

Differentiation of this program with respect to the original variables z as
well as the intermediate variables y yields an “extended” Jacobian matrix:

. E P"E
v
Typically the Jacobian matrix JE = (FE , FF) is sparse and so sparse AD
techniques can be applied to function F'Z to obtain this derivative information
efficiently. Note also that ﬁ'yE is block lower-triangular, and, due to the assump-
tion that intermediate vectors y are uniquely determined, ﬁ‘yE is nonsingular.
The first question we address in this section is how to write a structured
program to evaluate the gradient of f, V. f, such that automatic differentia-
tion can be applied to yield second-derivative information in an efficient way.
Once we have sorted this out, we take a step backwards and consider the more
practical concern: how do we apply automatic differentiation directly to the

structured program that evaluates f to yield the Hessian matrix, or perhaps
the Newton step, in an efficient way.

How to Differentiate the Gradient Function

To answer the first question, the gradient of the structured function f can be
evaluated as illustrated in Figure 2.2.

66 ADVANCES IN NONLINEAR PROGRAMMING

1. Differentiate FE yielding JE = (F‘f,ﬁ‘f)
2. Solve (ﬁ'f)Tw =-V,f.
3. Set Vof = Vof + (FEYT - w.

‘Figure 2.2 A Structured Gradient program

The derivation of this program is simple: First differentiate the extended
function Fi to obtain Jg; then, eliminate the (2,2)-block, V,fT, to define
vector w. Finally, modify the (2, 1)-block of matrix Jg using w to get V. f. In
other words, form matrix Jg (2.10) and then eliminate the (2, 2)-block using a
block Gaussian transformation.

Inspired by this simple program to evaluate the gradient of f, we define an
“extended” gradient GFg, a vector function of the triple (z,y,w):

FE
GFg(z,y,w) = ((Ff)Tw"'Vyf)
Vo f + (EF)w

In principle the vector function GFg can be differentiated, with respect to
(z,y,w) to yield a Newton system,

7 oz 0
HE 6y = 0
dw —-V.f

P _F 0
Hp=| (FE)Tw+Vif (Fp)Tw+Vif ()T
(FEYTw+ Ve f (FE)Tw+ VL, (EF)T

where

Typically matrix Hg exposes more sparsity than matrix H — the composite
function described in Section 1 is a good illustration. Moreover, additional
sparsity gains can often be achieved, in principle, if the structure in Step 3.
of the gradient-evaluation program is exploited. In particular, notice that the
computation V. f = V. f + (FE)T . w exhibits “partially separable” form. As
illustrated in [Coleman and Verma, 1996] it is often worthwhile to further break
down this step:

'STRUCTURE AND EFFICIENT HESSIAN CALCULATION 67

3.1 Compute u; = (ﬁ‘f_(z, N -w;, for i=1:p.
3.2 Assign V. f =V.f+3 u,.

Here FF(i,:) represents the ith “block” row of the Jacobian FF, i.e FE(s,
) = Fi. Vectors w;,i = 1,...,p form a partition of vector w.

The result of differentiating this “refined” program leads to a larger, sparser,
extended Hessian matrix Hgg:

FE FE 0 0 0 0 0 0
(FE)Tw +V2f (FEYTw+VZf (FHT ... (F))T 0 0 0 |

(F)T-w 7, 2T wi (Fl)T 6 0 -I 0 0

: : 0 .0 0 .0

(F*)T Wi (FENT - up, 0 0 (F»T o o0 -I
\ V2 f Vﬁyf 0 0 0 1 I
where the differentiation is done with respect to the (ordered) variables z,y,

Wiy...,Wp,U1,...,Up.

The point here is that due to increase in sparsity, it is often more economical
to directly compute the “super-extended” matrix Hgg.

How to Differentiate f (Twice)

If we define g(z,y,w) = f + wT FE(z,y) then Hg can be written:

FF Ff 0
Hg szg Vyg (FEYT (2.11)
vig Vi,9 (FEYT

This is an important observation because it yields the answer to the second
major question of Section 2: How do we apply automatic differentiation directly
to the f-evaluation code to yield the extended Hessian Hg in an efficient way?
The recipe follows from (2.11) and the definition of w:

1. Using the sparse AD techniques developed in [Coleman and Verma, 1996]
compute the extended Jacobian (F'F)

2. Solve the block lower triangular system for w: (Ff Tw+V,f=0.

3. Using sparse AD techniques, twice differentiate g(z,y,w) = f+wT FE(z,y),
with respect to z, y, to determine the Hessian matrix, i.e., Hg. As in-
dicated in Section 2.1, it can be advantageous to exploit the partially

68 ADVANCES IN NONLINEAR PROGRAMMING

separable structure in g(z,y,w) = f+ 2‘_}' wl FE: i.e., compute the
Hessian matrix of each component function w] FF in turn.

We conclude this section with two simple observations. First, the (reduced)
Hessian matrix H is available from Hg through a simple block-elimination
procedure. For, example if we partition Hg,

A L
Hg = (2.12)

B| M
then H=B - ML 1A.
Second, symmetry in the extended form Hg can be achieved with (block)
permutations:
0 FE FE
Hi = (FE)T V’,g V,,g
(FE)T vgyg szg /
3 EXAMPLES
In this section we illustrate the application of the structural ideas developed

in the previous section with two common classes of structured optimization
problems.

General Composite Functions and Dynamical Systems

A general composite function f : R — R! can be written

2= f(z) = F(Tp(Tp-1(... (T1(z))...), (3.13)

where, in general, functions T;,? = 1 : p are vector maps, while f is a scalar
map. This formulation is very common, for example, in weather simulations.
A natural high-level program to evaluate F is given below, where we let yq
denote z: - o
& Jlﬂﬂﬂfﬁ‘ﬂiﬂh\mﬁ and (b Slivacy
; fm_' =1 ? "

“Solve” for y;: Yi— Ta(y!-vl) T 0

. “.S'olve forz z= j{y,) = 0

'STRUCTURE AND EFFICIENT HESSIAN CALCULATION 69

Clearly this is a special case of the general extended form given in Figure
1.1, where we define

- Ti(z)-wn
FE Ta(y1) — y2

« Te(yk—1) — y
The general recipe given in Section 2.2 can be applied here, followed by a

simple permutation, to yield the (symmetric) extended Hessian matrix Hy. If
we define g = f+ wTFF then

- 0 FF FF
Hi= (FEY Vig Vig
(EFF)T Vag Vieg,
Additional structure can be gleaned by closer examination of the submatrices
comprising Hj, i.e., exploiting the partial separable structure of wT FE:

0 0 —I A
A T
) 0 0 Ty I
HES7E = -1 (Jz)T V1211 ,ylg
-1 szlz,yzg
(Jx)T \
-I v
Yk YUk
()T Vi.9

Due to the high degree of sparsity, sparse AD techniques can be very effective
in the direct determination of Hj 5.

" Generalized partial separability

We define a generalized partially separable vector-valued function,

f(z)zf(yl)y27""yp); yi=Ti($), "=1:2;7P (314)

Note that if function f is simply a summation then f reduces to the usual
notion of partial separability.

Following the general form given in Figure 1.1, F' can be computed with the
following program,

70 ADVANCES IN NONLINEAR PROGRAMMING

7 fori=1:p
“Solve” for y;: yv; — Ti(z) = 0

“Solve” for z : z — f(yl,yz, s p) = 0.

Of course this program can be inefficient if some of the functions T; share
common sub-expressions. Therefore a more general program can be written
if we define a “stacked” vector YT = (y{,...yT) and a corresponding vector
function))

Th(z)
. Tz(z)
F(z) =

7Tp(1"')
“This yields the simple 2-liner:

“Solve” forY : Y — F(z) =0
“Solve” forz: z = f(y1,Y2,---,Yp)-

"Therefore the structured program to evaluate f is a particular case of the
general form illustrated in Figure 1.1 and the general recipe given in Section
2.2 can be applied.

Note that if g = f+ wTFF then V2, g = V2, g = 0; therefore, there is
additional structure in the extended Hessian matrix:

) 0 -I
HE = -1 Vg
N (FI)T 0 V?:zg /

o an
-

‘4 CONCLUSIONS

The arrival of robust, reliable automatic differentiation tools, e.g., [Bischof
et al., 1992; Griewank et al., 1996], is a major new development in scientific
computing. The potential impact on numerical optimization is enormous.
This paper is concerned with the efficient determination of Hessian matrices,
and Newton steps, in large-scale optimization problems. If there is sparsity in
the Hessian matrix then graph coloring techniques [Coleman and Cai, 1986;
Coleman and Verma, 1995] can be used to guide the use of AD software — the
efficiency gains can be significant. However, our thesis is that many large-scale

"REFERENCES 71

problems exhibit structure at a high, accessible, level. Such problems often have
dense Hessian matrices, rendering direct application of sparse AD techniques
impotent. However, differentiation of a structured program to evaluate the
objective function often exposes sparsity, at a deeper level, and thereby allows
for the efficient application of sparse AD technology.

5 ACKNOWLEDGMENTS

This research was partially supported by the Applied Mathematical Sciences
Research Program (KC-04-02) of the Office of Energy Research of the U.S.
Department of Energy under grant DE-FG02-90ER25013, and in part by the
Advanced Computing Research Institute, a unit of the Cornell Theory Center
which receives major funding from the National Science Foundation and IBM
Corporation, with additional support from New York State and members of its
Corporate Research Institute.

References

[Averick et al., 1994] Averick, B. M., Moré, J. J., Bischof, C. H., Carle, A,
and Griewank, A. (1994). Computing large sparse Jacobian matrices using
automatic differentiation. SIAM Journal on Scientific Computing, 15:285—
294.

[Bischof et al., 1995] Bischof, C. H., Bouaricha, A., Khademi, P. M., and Moré¢,
J. J. (1995). Computing gradients in large-scale optimization using automatic
differentiation. Preprint MCS-P488-0195, Mathematics and Computer Sci-
ence Division, Argonne National Laboratory, Argonne, Ill.

[Bischof et al., 1992] Bischof, C. H., Carle, A., Corliss, G. F., and Griewank,
A. (1992). ADIFOR: Automatic differentiation in a source translation envi-
ronment. In Wang, P. S., editor, Proceedings of the International Symposium
on Symbolic and Algebraic Computation, pages 294-302, New York. ACM
Press.

[Broyden, 1965] Broyden, C. (1965). A class of methods for solving nonlinear
simultaneous equations. Mathematics of Computation, 19:577-593.

[Coleman and Cai, 1986} Coleman, T. F. and Cai, J. Y. (1986). The cyclic
coloring problem and estimation of sparse Hessian matrices. SIAM J. Alg.
Disc. Meth., 7:221-235.

[Coleman and Verma, 1995] Coleman, T. F. and Verma, A. (1995). The ef-
ficient computation of sparse Jacobian matrices using automatic differen-
tiation. Tech. Report TR95-1557, Computer Science Department, Cornell
University.

72 ADVANCES IN NONLINEAR PROGRAMMING

[Coleman and Verma, 1996] Coleman, T. F. and Verma, A. (1996). Structure
and efficient Jacobian calculation. In Berz, M., Bischof, C., Corliss, G., and
Griewank, A., editors, Computational Differentiation: Techniques, Applica-
tions, and Tools, pages 149-159. SIAM, Philadelphia, Penn.

[Griewank et-al., 1996] Griewank, A., Juedes, D., and Utke, J. (1996). ADOL~
C, a package for the automatic differentiation of algorithms written in
C/C++. ACM Trans. Math. Software, 22(2):131-167.

[Hossain and Steihaug, 1995] Hossain, A. K. M. and Steihaug, T. (1995). Com-
puting a sparse Jacobian matrix by rows and columns. Tech. Report 109,
Department of Informatics, University of Bergen, Bergen.

[matlab,] matlab. MATLAB 4.2c for UNIX, The Mathworks, Inc., 24 Prime
Park Way, Natick, Massachusetts 01760.

w#t.p

|
(Y

(fj‘

v

